
PHOTOCHEMISTRY OF AN OXASPIROPENTANE DERIVATIVE^{1a} J. K. Crandall^{1b} and D. R. Paulson^{1c} Department of Chemistry, Indiana University Bloomington, Indiana 47401 Contribution No. 1673

(Received in USA 8 May 1969; received in UK for publication 6 June 1969)

In conjunction with studies on the chemistry of oxaspiropentane \underline{l} ,² we have examined the photochemical decomposition of this strained epoxide. Irradiation of a benzene solution of \underline{l} with 2537 Å light resulted in the formation of three volatile products identified as cumulene $\underline{2}$,³ allene alcohol $\underline{3}$,² and alleneoxetane $\underline{4}$. The latter compound displays nmr singlets at τ 8.62 and 8.28 in a 2:1 ratio and weak allene absorption at 5.04 μ in the infrared. A mass spectrum (70 eV) confirmed its isomeric relationship with \underline{l} (M⁺ at m/e 166) and showed an odd-electron fragment at m/e 108 as the base peak. This corresponds to cleavage to the butatriene radical-cation as indicated, a process which finds analogy in the mass spectrum of oxetane it-self.⁴ Chemical assurance of the assigned structure is provided by its clean degradation to tetramethyloxetanone $\underline{5}^5$ by ozone in pyridine/methylene chloride.

Careful glpc monitoring of the photolysis demonstrated that the yields of 2 and 3 increased to a maximum (19% and 13%, respectively) and then decreased upon further irradiation. In contrast, oxetane $\frac{1}{2}$ was not evident during the initial phases of reaction, but thereafter its yield increased monotonically as a function of photolysis time to a maximum of <u>ca</u>. 10%. This behavior suggested that $\frac{1}{2}$ was a secondary photoproduct. Ready confirmation of this proposal was provided when irradiation of a benzene solution containing equimolar amounts of acetone and 2gave $\frac{1}{2}$ in good yield.

Mechanistic possibilities are illustrated below. Energy transfer from the benzene photosensitizer yields an excited oxaspiropentane species which is capable of bond rupture of the indicated C-O linkage to produce delocalized biradical $\underline{6}$. Structural reorganization of this species in a fashion analogous to that of the related cation³ gives biradical $\underline{7}$. This second 'intermediate provides a ready pathway to $\underline{3}$ by intramolecular radical disproportionation through a favorable six-center process. It may also account for $\underline{2}$ by elimination of acetone. Recent studies on the photodecomposition of phenyl epoxides,⁶ however, provide analogy for a second pathway to 2, involving carbene intermediate δ . This species could arise by loss of acetone from δ and would be expected to collapse to 2 readily.⁷ Attempts to demonstrate the presence of carbene δ by interception with added olefins were unsuccessful. The significance of this result is not certain, however, since the isomerization of δ to the cumulene could easily be too rapid for olefin trapping to compete.

The orientational preference for the addition of acetone to butatriene 2 in the elimination-addition pathway to $\frac{1}{2}$ is of interest in that it is opposite to the favored mode of ketone photoadditions to allenes.⁸ Attack of the n- π excited carbonyl oxygen at the terminal end of the cumulene system generates biradical intermediate 2 by way of a transition state in which there is substantial delocalization of the incipient radical. Alternate attack at a central carbon would also produce a delocalized biradical intermediate (10), but inspection of atomic orbital representation 11 shows that a 90° rotation about the π bond undergoing attack is necessary to achieve maximum overlap, and accordingly, the transition state for this mode of attack should enjoy less stabilization than that leading to 2.

<u>Acknowledgment</u>: Jack K. Crandall thanks Monsanto Research S. A. (Zürich) for providing facilities during the preparation of this manuscript.

References

- a. Supported by National Science Foundation Research Grant GP-6610.
 b. Alfred P. Sloan Research Fellow 1968-1970.
 - c. Public Health Service Predoctoral Fellow 1966-1968.
- 2. J. K. Crandall and D. R. Paulson, J. Org. Chem., 33, 991 (1968).
- 3. L. Skatteb/1, Tetrahedron, 21, 1357 (1965).
- 4. H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Mass Spectroscopy of Organic Compounds," 2nd ed, Holden-Day, Inc., San Francisco, 1967, p 251.
- 5. J. K. Crandall and W. H. Machleder, J. Amer. Chem. Soc., 90, 7292 (1968).
- 6. P. C. Petrellis, H. Dietrich, E. Meyer, and G. W. Griffin, <u>ibid.</u>, <u>89</u>, 1967 (1967);
 A. M. Trozzolo, W. A. Yager, G. W. Griffin, K. Kristinnson, and I. Sarkar, <u>ibid.</u>, <u>89</u>, 3357 (1967) and references therein.
- 7. W. M. Jones, M. H. Grasley, and D. G. Baarda, ibid., 86, 912 (1964).
- 8. H. Gotthardt, R. Steinmetz, and G. S. Hammond, J. Org. Chem., 33, 2774 (1968).